Pushdown Automata

A pushdown automaton, or PDA, extends the ε -NFA model by adding a stack with its own alphabet Γ (which may be different from Σ). Naturally, only the topmost symbol on the stack is visible.

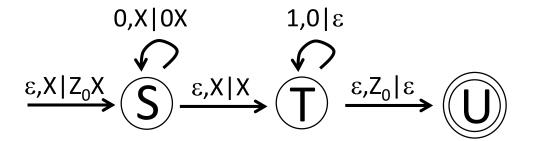
Transition notation for the stack:

<u>a,b cb</u>	means: on input a with b on top of the stack, push
	c (on top of b).

<u>a,b c</u>	means: on input a with	b on top of the stack, pop
	the stack and push c.	

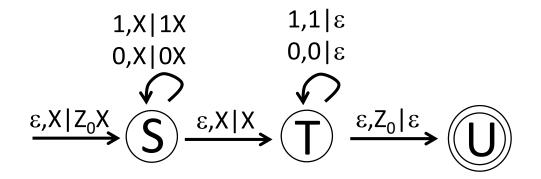
a,b ε	means: on input a with	b on top of the stack, pop
	the stack.	

Here is another example. This automaton accepts $\{0^n1^n \mid n \ge 0\}$



We will use the symbol Z_0 for the stack bottom (it marks the empty stack) and X as a placeholder for anything on the stack.

Example: the following PDA accepts strings in (0+1)* that are evenlength palindromes



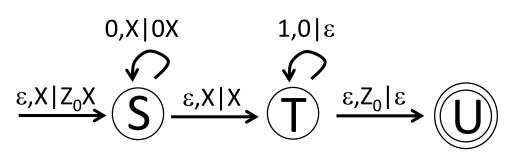
This automaton accepts strings that get to state U after consuming all of their input. Note that if it starts with an empty stack the stack will be empty at the end of the input.

We need a more formal and deterministic way to think about PDA computations.

An instantaneous description (ID) is a triple (q, w, γ) where

- q is a state
- w is a string (the portion of the input not yet used)
- g is a string of stack symbols (the complete contents of the stack, with the top on the left)

Here is an ID analysis of for the input 0011:



$$(S,0011,Z_{0}) \longrightarrow (T,0011,Z_{0}) \longrightarrow (U,0011,Z_{0})$$

$$(S,011,0Z_{0}) \longrightarrow (T,011,0Z_{0})$$

$$(S,11,00Z_{0}) \longrightarrow (T,11,00Z_{0})$$

$$(T,1,0Z_{0}) \longrightarrow (U,\varepsilon,\varepsilon) \text{ accept}$$

One step in such an ID analysis is $(q,\alpha w,x\beta) \longrightarrow (p,w,y\beta)$ This is valid if the PDA has a transition

$$q \xrightarrow{\alpha,x|y} p$$

We write $(q, w_1, \alpha) \xrightarrow{*} (p, w_2, \beta)$ if there is a sequence of steps that take the PDA from the first ID to the second.

Formally a PDA is a 7-tuple (Σ ,Q, δ ,s,F, Γ ,Z₀) where

- Σ ,Q,s,F have the same meanings as with DFAs
- δ is our configuration transforomation function
- Γ is the alphabet of stack symbols
- Z₀ is the stack bottom

There are two commonly used definitions of what it means for the PDA to accept a string:

Acceptance by final state: If P is the PDA $(\Sigma, Q, \delta, s, F, \Gamma, Z_0)$ then $\mathcal{F}(P) = \{w \mid \text{there is } q \in F \text{ and } \alpha \in \Gamma^* \text{ so that } (s, w, Z_0) \xrightarrow{*} (q, \varepsilon, \alpha)\}$

Acceptance by empty stack: If P is the PDA $(\Sigma, Q, \delta, s, F, \Gamma, Z_0)$ then $\mathcal{E}(P) = \{w \mid \text{there is some state q so that } (s, w, Z_0) \xrightarrow{*} (q, \varepsilon, \varepsilon)\}$

For a given automaton P, $\mathcal{E}(P)$ and $\mathcal{F}(P)$ are not necessarily the same. However, the languages that can be accepted by empty stack are the same as those that can be acceped by final state:

Theorem 1: Start with PDA P. Then there is a PDA P' where $\mathcal{F}(P')=\mathcal{E}(P)$.

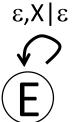
Theorem 2: Start with PDA P. Then there is a PDA P' where $\mathcal{E}(P')=\mathcal{F}(P)$.

Theorem 1: Start with PDA P. Then there is a PDA P' where $\mathcal{F}(P')=\mathcal{E}(P)$. **Proof**: To make P', start with P. Create a new start state s' which pushes a new stack symbol X_0 onto the stack before Z_0 . Make a new final state F. For each state q of P add a transition

If P ever accepts a string by emptying its stack, P' can transition to its final state F.

On the other hand, if P' ever accepts a string then at the end of the input there must be only X_0 on the stack, so P must have emptied its stack.

Theorem 2: Start with PDA P. Then there is a PDA P' where $\mathcal{E}(P')=\mathcal{F}(P)$. **Proof**: This is easy. Start with P' the same as P. Give P' a new state E that empties the stack:



and add an ϵ -transition from every final state to E. String w can take P to a final state if and only if w empties the stack of P'.